# Phylogeny of lions in West and Central Africa

Laura Bertola

laura.bertola@gmail.com

Institute of Environmental Sciences (CML), Leiden University Institute of Biology Leiden (IBL), Leiden University











# **Background**

- Distribution present day lion populations
- Two subspecies (IUCN):
  African & Asiatic lion
- More variation in species
  → distinct clades
- Taxonomy important for conservation



# **Background**



From the Conservation strategy for the lion in West and Central Africa, 2006

#### West and Central Africa:

- 10% of total African lion population
- Populations small and isolated
- Lion regionally endangered
- Not (sufficiently) sampled for phylogenetic studies

# **Background**

Position of West and Central African lions unknown

- West Africa unique climatological history
- Dichotomy in other African mammals

## Questions

- → Do lions from West and Central Africa form one or more distinct clade(s) within the species?
- Evolutionary history of population
- Genetic make up of populations
- Implications for conservation management

# **Approach**

- Collecting samples (wild & zoo)
- DNA data: cyt b + control region: n = 53 (15 countries)
- Increasing sample size with Genbank data: cyt b: n = 28 (5 countries)
  - control region: n = 45 (19 countries)
- Phylogenetic analyses:
  - Bayesian analysis
  - Maximum Likelihood analysis (ML)
  - Maximum Parsimony analysis (MP): haplotype network



#### **Results**

#### Consistent pattern in data:

- South + East Africa: high genetic diversity
- West + Central Africa: low genetic diversity
- Close relationship India and West + Central Africa













4a Cameroon West + Central 4d Cameroon **Africa** 11a-d Cameroon 4c Cameroon 1268 4b Cameroon 4e Cameroon 3a Cameroon 1457 13a-b Chad 14a Chad 3b Cameroon 18a-b Morocco ( 9a Angola 12a Chad 705 1a-b Benin 10a-b DRC 324 5a-b India 1403 813 943 17a India 5c India 8a RSA 8c RSA 874 6a-b Namibia 1407 15a-d Ethiopia 594 361 8b RSA 525 707 1264 7a-b Somalia 1023 342 19a Somalia 1082

2c Botswana

2a Botswana

**South + East Africa** 



## **Discussion**

Genetic pattern can be explained by:

Current natural structures
 (Sahel belt, rain forest, Rift valley)



#### **Discussion**

Genetic pattern can be explained by:

- 2. Climatological history (hyperarid conditions in Western Africa)
- Hyperarid conditions in Western Africa in late
  Pleistocene → local extinction
- Refugia in Middle East
- Recolonization of Western Africa
  (evolutionary young clade → low genetic variation)

- → Intermediate position of lions from North Africa and the Middle East?
- Ancient DNA methods on nowadays extinct lion populations





- → Intermediate position of lions from North Africa and the Middle East?
- Ancient DNA methods on nowadays extinct lion populations





- → Low genetic diversity in lion populations in West and Central Africa (inbreeding?)
- Comparison genetic make up and level of inbreeding Cameroon – Kenya lion populations.



- → Low genetic diversity in lion populations in West and Central Africa (inbreeding?)
- Comparison genetic make up and level of inbreeding Cameroon – Kenya lion populations.



- → Low genetic diversity in lion populations in West and Central Africa (inbreeding?)
- Comparison genetic make up and level of inbreeding Cameroon – Kenya lion populations.



- Non-invasive sampling
- Microsatellite analysis:
  - Genetic variation: polymorphism + level heterozygosity
  - Risk of inbreeding
- Population/park size, park management



- Results based on mDNA only (maternally inherited)
- Dissolving of tree
- → Extend dataset:
- Distribution of samples
- Target other genetic regions:
  - Y-chromosomal region (paternal lineage)
  - Complete mitochondrial genome (maternal lineage)
  - Single nucleotide polymorphisms (SNP),
    - >30,000 datapoints

### **Conclusion**

#### West and Central Africa:

- Genetically distinct
- Different level of genetic variety
- Unique evolutionary history
- Insight into evolutionary processes in Africa
- Giving priority to wild (meta)populations
- Breeding programs for captive stocks
- In the future: revision of phylo-taxonomy?

# Acknowledgements

- Dr. Hans de Iongh
- Dr. Klaas Vrieling
- Prof. Dr. Geert de Snoo
- Zoos and researchers who provided us with samples
- Hermen Visser
- Lana Müller
- Hester Jongbloed

